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Symmetry-adapted perturbation theory has been applied to compute the intermolecular potential energy surface
of the Ne-CO complex. The interaction energy is found to be dominated by the first-order exchange
contribution and the dispersion energy. Theab initio potential has a single minimum ofεm ) -53.49 cm-1

atRm ) 6.34 bohr andϑm ) 92.2°. The computed potential energy surface has been analytically fitted and
used in converged variational calculations to generate bound rovibrational states of the20Ne-CO complex
and the infrared spectrum corresponding to the simultaneous excitation of vibration and internal rotation in
the CO subunit within the complex. The computed frequencies of the infrared transitions corresponding to
theΣ f Σ, Σ f Π, andΠ f Σ subbands are in good agreement with the experimental data (Randall, R. W.,
et al. Mol. Phys. 1993, 79, 1113). The observed bending combination band is assigned to the transitions
from the ground state to the first excitedΣ state. Frequencies of theΠ f ∆ and∆ f Π transitions which
were observed in the static cell spectrum are also reported.

I. Introduction

Theoretical and experimental studies of van der Waals
complexes provide important information about weak intermo-
lecular forces between atoms and molecules. Van der Waals
molecules built of rare gas atoms and molecules are especially
interesting, since they represent the simplest case of anisotropic
interactions. The spectroscopic properties of these complexes
range from those of a nearly free internal rotor (e.g., Ar-H2,
ref 1) to those of an anharmonic oscillator/rigid rotor (e.g., Ar-
C6H6, refs 2 and 3). The complexes of CO with heavier rare
gas atoms lie between the semirigid and nearly free internal
rotor limits. They represent a very interesting intermediate case,
where the assignments of the corresponding experimental spectra
are rather difficult.
Theoretical and experimental investigations of the Ne-CO

complex are scarce. To our knowledge noab initio potential
is available for this system. Until recently, experimental studies
of Ne-CO were restricted to bulk and transport properties:
second virial coefficients,4,5 viscosity,6 diffusion coefficients,
and thermal diffusion factors.7 These data were analyzed by
using simple isotropic potentials. In 1993 Randallet al.8

reported an experimental study of the infrared spectrum of Ne-
CO corresponding to the simultaneous excitation of vibration
and internal rotation of the CO subunit within the complex. Part
of the recorded spectrum could be assigned by fitting the
observed transition frequencies to a near-symmetric-rotor
expression for the energy levels. The next step toward a full
understanding of the dynamics of Ne-CO involves an analysis
of the experimental data using a realistic potential energy
surface,e.g., from ab initio calculations.
In the present paper we report symmetry-adapted perturbation

theory (SAPT) calculations of the potential energy surface for
Ne-CO and dynamical calculations of the positions and
intensities of lines in the infrared spectrum of the complex
corresponding to the simultaneous excitation of vibration and
internal rotation of the CO subunit within the complex. The

plan of this paper is as follows. In section II the SAPT
calculations are briefly described, and the analytical fits to the
computed points are presented. In section III we describe the
features of the computed potential energy surface. The formal-
ism used in dynamical calculations is outlined in section IV.
The calculated bound states and infrared spectrum are discussed
in section V. Finally, in section VI we present conclusions.

II. Outline of SAPT Calculations

A. Method and Definitions. In the present paper we follow
the approach introduced and tested in our previous papers9-12

(see also ref 13 for a review). The SAPT interaction energy is
represented as a double perturbation expansion of various
polarization and exchange contributions,14,15

whereEpol
(nl) andEexch

(nl) denote polarization and exchange contri-
butions, respectively, of thenth-order in the intermolecular
interaction andlth-order in the intramonomer electronic cor-
relation. For the purpose of further discussion it is convenient
to introduce a partitioning ofEint into components corresponding
to the Hartree-Fock (Eint

HF) and correlated (Eint
corr) levels of the

theory,

The Hartree-Fock interaction energy is decomposed as16-19

where Epol
(10) and Eexch

(10) are the electrostatic and exchange
contributions, respectively, with complete neglect of the in-
tramolecular correlation effects,20 Eind,resp

(20) andEexch-ind,resp
(20) are

the Hartree-Fock induction and exchange-induction energies,
respectively, accounting for the coupled-Hartree-Fock type
response,18,19 and δEint

HF collects higher-order induction and
exchange contributions. For the Ne-CO interaction at large
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intermonomer distancesR the latter term is dominated by the
third-order induction energy and vanishes asR-10.
At the correlated level, the SAPT interaction energy is

represented by

whereEdisp
(2) is the exact dispersion energy, andεpol

(1), εexch
(1) , εind

(2),
εexch-ind
(2) are the electron correlation contributions to the exact
electrostatic (Epol

(1)), exchange (Eexch
(1) ), induction (Eind

(2)), and
exchange-induction (Eexch-ind

(2) ) energies, respectively,i.e., εpol
(1)

≡ Epol
(1) - Epol

(10), εexch
(1) ≡ Eexch

(1) - Eexch
(10), and εind

(2) ≡ Eind
(2) -

Eind,resp
(20) , andεexch-ind

(20) ≡ Eexch-ind
(2) - Eexch-ind,resp

(20) . In the present
study the contributions toEint

corr were approximated as follows:

The electrostatic correctionsEpol,resp
(1n) are defined as in ref 21.

The first-order exchange componentsEexch
(1n) are defined as in

refs 22 and 23. The quantity∆exch
(1) (CCSD), obtained from

coupled cluster singles and doubles calculations, gives first-
order exchange contributions of higher than second-order in the
monomer correlation. The dispersion componentsEdisp

(2n) are
derived in ref 24. The induction-correlation termεind

(22) repre-
sents the true correlation contribution to the nonrelaxedEind

(22)

correction, as defined in ref 25. Finally,Eexch-disp
(20) is the so-

called “Hartree-Fock” exchange-dispersion energy.26

The uncorrelated induction energyEind,resp
(20) is significantly

quenched by its exchange counterpart and the same must be
true in the case ofεind

(22). Thus, the inclusion of this term
without the corresponding exchange contribution would not
be appropriate. Since the contribution which accounts for
such quenching has not been coded yet, we have estimated
it by scaling the uncorrelated quantity with the factor
εind
(22)/Eind,resp

(20) ,27

As shown in Table 1, the convergence in terms of the
intramolecular correlation is very good for the electrostatic, first-
order exchange and induction energies, and the approximations
given by eqs 5-7 should be accurate within a few percent. The

convergence of the many-body perturbation expansion of the
dispersion energy is only moderately fast. However, the results
of refs 28 and 29 suggest that the contribution of terms of the
order higher than the second (n g 3) should represent at worst
a few percent of the total dispersion energy.
B. Computational Details. The intermolecular potential

energy surface for the Ne-CO system, where CO is kept rigid,
can be naturally described in the Jacobi coordinates (R,ϑ), where
R is the distance from the center of mass of CO to the Ne atom,
andϑ is the angle between the vector pointing from the center
of mass of CO to Ne and the vector pointing from the carbon
to the oxygen atom. Calculations have been performed for five
intermolecular distancesR ranging fromR) 5 bohr toR) 10
bohr and seven equidistant anglesϑ from ϑ ) 0° to ϑ ) 180°.
In addition, potential energy curves forϑ ) 15°, 75°, 105°,
and 165° have been computed. In total, we calculated 55 points
on the surface. In all calculations the bond length of CO was
fixed at its experimental equilibrium value,i.e., r(CO)) 2.132
bohr. For the neon atom we used a [5s4p3d2f] basis set. The
core-valence part of this basis consisted of the cc-pVDZ basis
of Woon and Dunning30,31 with the most diffuse s exponent
(0.4869) left uncontracted. For the diffuse part we selected an
even-tempered set optimized for the cc-pVTZ basis.32 We
augmented this basis with s orbitals with exponents 0.1133 and
0.033 94, p orbitals (0.0918 and 0.025 52), d orbitals (0.386
and 0.135 95), and f orbitals (1.084 and 0.461 89) (see Table
III of ref 32). For the CO monomer we used the [8s5p3d1f/
8s5p3d1f] basis set of Diercksen and Sadlej33 optimized for
dipole and quadrupole properties of this molecule. The spherical
form of the polarization functions has been used (five d functions
and seven f functions). In order to fully account for the charge-
overlap effects all calculations have been done by using the
full dimer basis set.
All calculations have been performed with the SAPT system

of codes.34 In addition, long-range induction and dispersion
coefficients corresponding to the multipole-expanded induction35

and dispersion energies10 have been computed at the same level
of theory and with the same basis sets by means of the Polcor
package.36,37 These coefficients have been subsequently used
in the analytical fits of the induction and dispersion energies.
We used the Boys-Bernardi counterpoise correction to elimi-
nate the basis set superposition error from the supermolecular
Hartree-Fock calculations.38
C. Analytical Potential Fits. The different contributions

to the interaction energy, as computed by SAPT, exhibit different
radial dependence, and each component of the interaction energy
can be fitted separately. The fitting procedure adopted in the
present work was the same as in our previous papers.11,12

Below, we give only a short summary. For the details we refer
the reader to ref 12.
We performed separate fits of the sum of short-range

contributionsEshort,

of the induction energyEind
(2), and of the dispersion energy

Edisp
(2) . The short-range contribution was fitted to the expres-

sion

where the parametersR(ϑ), R0
sh(ϑ), and R1

sh(ϑ) were repre-
sented by Legendre expansions,

TABLE 1: Convergence of the Many-Body Perturbation
Expansions of the Electrostatic, Exchange, Induction, and
Dispersion Components of the Interaction Energy, forR )
7.0 bohr andT ) 90°a

Epol
(10) -4.581 Eind,resp

(20) -4.912

Epol,resp
(12) -1.954 εind

(22) -0.966

Epol,resp
(13) 0.820 Edisp

(20) -48.849

Eexch
(10) 17.208 Edisp

(21) 2.294

εexch
(1) (CCSD) 3.723 Edisp

(22) -10.229
a Energies are in cm-1.

Eint
corr ) εpol

(1) + εexch
(1) + εind

(2) + εexch-ind
(2) + Edisp

(2) + Eexch-disp
(2) (4)

εpol
(1) ) Epol,resp

(12) + Epol,resp
(13) (5)

εexch
(1) ) Eexch

(11) + Eexch
(12) + ∆exch

(1) (CCSD) (6)

εind
(2) ) εind

(22) (7)

Edisp
(2) ) Edisp

(20) + Edisp
(21) + Edisp

(22) (8)

Eexch-disp
(2) ) Eexch-disp

(20) (9)

εexch-ind
(2) ≈ Eexch-ind,resp

(20)
εind
(22)

Eind,resp
(20)

(10)

Eshort) Epol
(1) + Eexch

(1) + Eexch-ind
(2) + Eexch-disp

(2) + δEint
HF (11)

Eshort(R,ϑ) ) exp(-R(ϑ)[R- R0
sh(ϑ)]) -

Rexp(-R(ϑ)[R- R1
sh(ϑ)]) (12)
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Note that we use atomic units for the energy, as well as for the
distance.
The induction componentEind

(2)(R,ϑ) was represented by the
sum of the damped multipole expansion and an exponential
function (the latter representing the short-range charge-overlap
contribution to the induction energy39-41

The induction constants for a givenϑ are defined by

whereCn,ind
l are standard long-range induction coefficients as

defined in ref 35. The coefficientsCn,ind
l were computedab

initio in the same basis set and at the level of theory
corresponding to the fitted functionEind

(2)(R,ϑ). We assumed
the damping functionfn(R;b) in the Tang-Toennies form.42

Similarly as in the case of theEshort component, the fitted
parametersâ ind(ϑ), R0

ind(ϑ), and ẫ ind(ϑ) were represented by
series in Legendre polynomials.
The analytical representation of the dispersion energy was

the same as of the induction term, eq 14, with the induction
constantsCn,ind(ϑ) replaced by the dispersion constantsCn,disp(ϑ).
The long-range dispersion coefficients were again computedab
initio in the same basis set and at the level of theory
corresponding to the fitted functionEdisp

(2) (R,ϑ). The damping
function was also assumed in the Tang-Toennies form.
In all fits the agreement between computed and fitted points

was very good: typical deviations are of the order of 0.5%
andsexcept for the region where the potential vanishessthe
error did nowhere exceed 1%. We have not tabulated all the
fit parameters; a Fortran program that generates the analytical
Ne-CO potential can be requested by e-mail from avda@
theochem.kun.nl.

III. Features of the Potential Energy Surface

The computed potential energy surface for Ne-CO reveals
a single minimum ofεm ) -53.49 cm-1 corresponding to the
T-shape geometry of the complex (Rm ) 6.34 bohr andϑm )
92.2°). The total interaction energy and its dominant compo-
nents (Eshort, Eind

(2), andEdisp
(2) ) for R) 7 bohr and varyingϑ are

shown in Figure 1. An inspection of Figure 1 shows that the
short-range energy and the dispersion energy are two major
contributions to the interaction potential determining its ani-
sotropy. The induction energy is much less important forϑ e
120° but shows a strong anisotropy for largerϑ. Obviously,
the dispersion and induction components favor the linear Ne-
CO geometry. However, the short-range energy (dominated by
the exchange energy,cf. Table 1) behaves, to a good ap-
proximation, in an opposite manner toEdisp

(2) + Eind
(2) and shows

a stronger anisotropy. Consequently, the position of the
minimum is determined by the anisotropy of the exchange-
repulsion term.

In Figure 1 we also report the angular scan of the potential
energy surface in the region of the van der Waals minimum.
An inspection of this figure shows that the potential is rather
flat as function of the angle forϑ e 120° and shows a high
barrier to internal rotation of the CO subunit aroundϑ ) 180°.
This strongly suggests that the CO monomer in the complex
will behave like a hindered rotor.
To investigate the importance of the anisotropic contributions

to the potential in various regions of the configuration space it
is useful to expand it as a series in Legendre polynomials

whereV is the sum of contributions in eqs 12 and 14 and the
dispersion equivalent of eq 14. The expansion coefficientsVl(R)
can be easily evaluated numerically by the use of the Gauss-
Legendre quadrature. The advantage of the expansion (16) is
that it shows explicitly the anisotropy of the potential, the term
with l ) 0 being the isotropic potential. In order to establish
the importance of various anisotropic terms at variousR, we
report in Figure 2 the radial dependence of theVl(R) coefficients
for l e 4. Around the van der Waals minimum (R) 6.34 bohr)
all terms up tol ) 4 contribute significantly to the potential,

Figure 1. Angular dependence of the Ne-CO interaction energy
components in the region of the van der Waals minimum (R ) 7.0
bohr).

Figure 2. Expansion coefficientsVl(R), cf. eq 16, of theab initioNe-
CO interaction potential.

V(R,ϑ) ) ∑
l)0

∞

Vl(R)Pl(cosϑ) (16)

R(ϑ) ) ∑
l)0

lmax

Rl Pl(cosϑ), R0
sh(ϑ) ) ∑

l)0

lmax

R0l
shPl(cosϑ),

R1
sh(ϑ) ) ∑

l)0

lmax

R1l
shPl(cosϑ) (13)

Eind
(2)(R,ϑ) ) exp(-â ind(ϑ)[R- R0

ind(ϑ)]) -

∑
n)6

12

fn(R; ẫ ind(ϑ)) Cn,ind(ϑ)R
-n (14)

Cn,ind(ϑ) ) ∑
l)0

n-4

Cn,ind
l Pl(cosϑ) (15)
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and a closer analysis shows that higher anisotropic terms are
also important, and in order to obtain converged results forϑ

varying from 0° to 180°, one has to sum up all terms up to and
including l ) 14. At the minimum this expansion approximates
the total energy within 1%. The fact that we need to go to this
high order inl also suggests that the rotations of the CO subunit
within the dimer will be hindered.
As discussed in the Introduction, the transport data of the

Ne-COmixtures could be analyzed in terms of simple isotropic
potentials,6,7 so it is interesting to compare these potentials with
theab initio isotropic potential. The empirical potential fitted7

to the diffusion data and second virial coefficients has a
minimum ofε0m) -43.09 cm-1 atR0m) 6.36 bohr, and crosses
zero atσ ) 5.77 bohr. These values do not compare favorably
with the parameters of theab initio isotropic potential:ε0m )
-34.42 cm-1, R0m ) 7.16 bohr, andσ ) 6.43 bohr. Since our
full ab initio potential reproduces very well43 the measured
second virial coefficients,4,5 it seems that the isotropic potential
derived in ref 7 is an effective potential and represents a poor
approximation to the true isotropic potential. By contrast, our
values ofε0mandσ agree rather well with the scaling parameters
εij ) -36.09 cm-1 andσij ) 6.16 bohr for Ne-CO, applied in
the analysis of the viscosity data using the extended law of
corresponding states.6

IV. Outline of the Dynamical Calculations

Depending on the strength of the anisotropy in the interaction
potential, nuclear motions in weakly bound van der Waals
complexes are usually described by using a set of coordinates
related to a space-fixed or body-fixed frame.44 The semiem-
pirical analysis of the experimental spectrum reported in ref 8
suggests that a body-fixed description is appropriate. This
means that the energy levels and infrared transitions can be
approximately classified by using the caseb coupling of Bratoz
and Martin;45 i.e., the diatom in the complex should behave as
a hindered rotor. Choosing theembeddedreference frame such
that the vectorR connecting the diatom center of mass with
the atom defines the newz axis, the Hamiltonian describing
the nuclear motion can be written as46,47

Here, the operatorj acts on the angular coordinates of the vector
r in the body-fixed frame. Note, that the present coordinate
system corresponds to the so-called “two-thirds body-fixed”
system of refs 44 and 47. Therefore, the angular momentum
operatorj and the pseudo angular momentum operatorJh do not
commute andJh * J.
The only rigorously conserved quantum numbers are the total

angular momentumJ and the spectroscopic parityσ. [The
spectroscopic parityσ is related to the conventional parityp by
the relationσ ) p(-1)J.] The diatom rotational quantum
numberj, and the projectionK of J (and j) onto the intermo-
lecular axis, are only approximately conserved. This conserva-
tion is broken by off-diagonal Coriolis interaction. SinceK is
the projection of an angular momentum, states withK ) 0,(1,
etc., are denoted asΣ, Π, etc. In addition, levels withσ ) +1
and σ ) -1 will be designated by superscriptse and f,
respectively. ForK ) 0 only e parity states exist. The caseb
coupling of Bratoz and Martin45 gives a very simple classifica-
tion of the rovibrational energy levels of the complex: each
monomer rotational levelj is split into j + 1 levels correspond-
ing to anyJ g |K| with K ) 0, (1, (2, ...,(j. The inclusion
of the Coriolis interaction introduces further splitting of the states

with |K| * 0 (the so-calledl-doubling) into states withe andf
parity labels.
The wave function describing the nuclear motion can be

expanded in a basis of products of radial functionsøn(R) and
angular functions of the form

where (â,R) are polar angles of theR vector in the space-fixed
coordinates,ϑ andæ are the spherical angles of ther vector in
the body-fixed coordinates, andDM,K

(J) (R,â,γ) is an element of
the Wigner rotation matrix.48 The angular basis functions have
a well-defined parityσ, so the full Hamiltonian, eq 17, is blocked
in bothσ andJ. Within each block functions with differentK
are mixed through the off-diagonal Coriolis interaction.
The radial basis consisted of Morse-type oscillator functions46

characterized by three parameters:Re,De, andωe, which served
as further variational parameters. We optimized these by
minimizing the energy of theJ ) 0 state. This gaveRe ) 7.2
bohr, andDe ) 34.39 cm-1, andωe ) 16.46 cm-1. The final
basis was restricted to the space withj e 14 andn e 20. The
rotational constants of the CO molecule were fixed at 1.922 516 5
and 1.905 013 5 cm-1 for ground and excited vibrational states,
respectively. In the calculations we used the following masses:
49 20Ne- 19.992 44 amu,12C- 12.0 amu, and16O- 15.994 91
amu.
The allowed dipole transitions between the states of the

complex can be deduced from an analysis of the expression for
the transition intensity, and it follows easily that the observed
dipole transitions must obey the following rigorous selection
rules: |∆J| ) 1, ∆σ ) 0 or ∆J ) 0, |∆σ| ) 2. Since theK
quantum number is nearly conserved, an additional approximate
selection rule should hold:|∆K| ) 0, 1.
The wave functions for the initial and final states obtained

by solving the Schro¨dinger equation with the Hamiltonian of
eq 17 can be used to compute the infrared absorption intensities
for the complex. The infrared absorption coefficientI(i′′J′′ f
i′J′) for the transitioni′′J′′ f i′J′ is proportional to,

whereEiV
J denotes the energy of theith state of Ne-CO(V)

labeled byJ, Z(T) is the partition function, the line strength is
given by

andµm
01 is the spherical component of the vibrational transition

dipole of the CO monomer.

V. Bound States and Infrared Spectrum of Ne-CO

In Table 2 we report the energy levels of the20Ne-CO
complex forJe 9. The ground state of20Ne-CO is bound by
34.15 cm-1. Also presented in this table is the labeling of the
van der Waals states with theK quantum number. As we
discussed above, theK quantum number is nearly conserved,
and the van der Waals states can be described by theΣ, Π, etc.
labels. As discussed in section III, the anisotropy of the Ne-
CO potential in the region of the van der Waals minimum is
relatively strong, so it is interesting to see if the energy levels
of Ne-CO can be approximately labeled with thej quantum
number. An analysis of the dominant contributions of the
angular functions labeled byj to the wave function for a given

H ) - p2

2µR
∂
2

∂R2
R+

J2 + j2 - 2j‚Jh

2µR2
+ bV j

2 + V (17)

[YK
j (ϑ,æ)DM,K

(J)* (R,â,0)+ σY-K
j (ϑ,æ)DM,-K

(J)* (R,â,0)] (18)

exp(-Ei
J′′
′′0/kBT)

Z(T) (Ei
J′
′1 - Ei

J′′
′′0) S(0i′′J′′ f 1i′J′) (19)

S(0i′′J′′ f 1i′J′) ) ∑
M′′,M′,m
|〈Ψi

J′
′
M′|µm

01|Ψi
J′′
′′
M′′〉|2 (20)
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J suggests thatj is strongly mixed by the anisotropic interaction.
This confirms again that the CO subunit in the complex behaves
as a hindered rotor.
Since the rovibrational states of Ne-CO reveal a hindered

rotor behavior, it may be interesting to see the contour plots of
the corresponding wave functions. In Figure 3a we depict the
contour plot of the anisotropic potential, while in Figure 3b we
report the contour plot of the ground-state wave function. The
ground-state wave function shows a single maximum, fairly
close to the position of the minimum in the potential but slightly
shifted to largerR, cf., Figure 3a. The state is rather localized
in the van der Waals stretch coordinateR. The expectation value
〈R〉 is 6.87 bohr, which is not far from the minimum of the
interaction potential (Rm) 6.34 bohr). In the angular coordinate
ϑ the state is more delocalized, especially toward the smaller
values ofϑ. This may be seen from the spread in angles: the
minimum valueϑm is 92.2°, the value arccos〈P1(cosϑ)〉 obtained
from 〈P1〉 is 68.32°, and the value arccos[(2〈P2(cosϑ)〉 + 1)/
3]1/2 obtained from〈P2〉 is 57.09°.
The infrared transition frequencies for the20Ne-CO complex

are reported in Tables 3-11 (see also Figure 4 for graphical
illustrations of the spectra atT ) 2 K andT ) 50 K). Since
we assumed that the CO vibration is decoupled from the
intermolecular modes, the transition frequencies were computed
from the formula

whereQ1(0) ) 2143.2712 cm-1 50 is the frequency of the CO
stretching fundamental.
An inspection of Table 3 shows that the agreement of

theoretical transition frequencies for theΣ f Σ subband with
the results of high-resolution measurements is very good. Since
theΣ f Σ transitions probe mainly the isotropic potential and
its dependence onr(CO), the level of agreement presented in
Table 3 suggests that the isotropic part of theab initio potential
is accurate. Small discrepancies of the order of 0.07 cm-1 may

TABLE 2: Energy Levels (in cm-1) of the 20Ne-CO (W ) 0) Complex, Calculated from theab Initio Potential

J Σ Πe Πf ∆e ∆f Φe Φf

0 -34.152
-25.899
-18.824

1 -33.934 -30.544 -30.529
-25.683 -18.141 -18.281
-18.786 -13.050 -12.995

2 -33.498 -30.124 -30.079 -23.111 -23.111
-25.252 -17.558 -17.840 -7.644 -7.643
-18.576 -12.782 -12.625

3 -32.846 -29.495 -29.404 -22.479 -22.479 -11.795 -11.789
-24.606 -16.772 -17.179 -7.030 -7.027
-18.173 -12.371 -12.081

4 -31.977 -28.656 -28.506 -21.638 -21.637 -10.980 -10.958
-23.747 -15.791 -16.300 -6.224 -6.214
-17.573 -11.807 -11.362

5 -30.893 -27.610 -27.385 -20.589 -20.588 -9.963 -9.918
-22.678 -14.617 -15.205 -5.235 -5.211
-16.776 -11.081 -10.468

6 -29.596 -26.357 -26.044 -19.336 -19.331 -8.748 -8.671
-21.399 -13.254 -13.895 -4.077 -4.025
-15.781 -10.189 -9.396

7 -28.088 -24.898 -24.484 -17.880 -17.870 -7.339 -7.223
-19.915 -11.707 -12.373 -2.673 -2.664
-14.590 -9.127 -8.144

8 -26.372 -23.236 -22.706 -16.228 -16.205 -5.743 -5.576
-18.229 -9.981 -10.644 -1.304 -1.136
-13.201 -7.891 -6.712

9 -24.449 -21.372 -20.715 -14.387 -14.341 -3.971 -3.738
-16.346 -8.086 -8.711 0.294 0.552
-11.611 -6.479 -5.100

∆E(J′′ f J′) ) Ei
J′
′1 - Ei

J′′
′′0 + Q1(0) (21)

b

a

Figure 3. (a) Cut through theab initio Ne-CO potential (in cm-1).
(b) Cut through theJ ) 0, j ) 0 rovibrational wave function of Ne-
CO(V ) 0), amplitude in 10-3 (bohr)-3/2.
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be due to the implicit use of the Ne-CO(V ) 0) potential for
the CO(V ) 1) state in the bound state calculations.
Comparison of the theoretical and experimental frequencies

of transitions between theΣ andΠ states are presented in Tables
4-7. Here too, the agreement between theory and experiment
is rather good. Most of the line positions agree within 0.1-
0.3 cm-1 or better. Since theΣ f Π andΠ f Σ transitions
probe mainly the even anisotropic terms in the Legendre
expansion of the interaction potential in eq 16 the results
reported in Tables 4-7 show that the anisotropy of theab initio

potential is not entirely correct. The basis sets used in our SAPT
calculation neglected the functions of g and higher symmetry.
This neglect may affect both the dispersion energy and the first-
order exchange-repulsion. It is not surprising, then, that the
agreement with experiment is somewhat less satisfactory.
Since the results for theΣ f Σ transitions suggest that the

potentials for Ne-CO(V ) 0) and Ne-CO(V ) 1) are slightly
different, we repeated bound-state calculations using two
potentials corresponding to theV ) 0 andV ) 1 states of CO.
The potential for Ne-CO(V ) 1) was obtained by scaling the

TABLE 3: Frequencies (in cm-1) of the Infrared Transitions in the Σ f Σ Subband of the20Ne-CO Spectruma

P(J) R(J)

J theory experiment ∆ theory experiment ∆

0 2143.4770 2143.4171 0.060 (0.011)
1 2143.0409 2142.9827 0.058 (0.006) 2143.6947 2143.6337 0.061 (0.014)
2 2142.8232 2142.7653 0.058 (0.004) 2143.9118 2143.8494 0.062 (0.017)
3 2142.6061 2142.5485 0.058 (0.003) 2144.1278 2144.0637 0.064 (0.021)
4 2142.3900 2142.3319 0.058 (0.002) 2144.3426 2144.2768 0.066 (0.024)
5 2142.1751 2142.1163 0.059 (0.002) 2144.5556 2144.4870 0.069 (0.029)
6 2141.9620 2141.9019 0.060 (0.002) 2144.7665 2144.6974 0.069 (0.032)
7 2141.7508 2141.6889 0.062 (0.003) 2144.9751 2144.9020 0.073 (0.038)
8 2141.5420 2141.4791 0.063 (0.004) 2145.1807 2145.1050 0.076 (0.043)
9 2141.3360 2141.2711 0.065 (0.005)

a ∆ is the absolute error of the transition frequencies computed from theab initio potential. The numbers in parentheses are absolute errors of
the transition frequencies computed from the scaled potential.

TABLE 4: Frequencies (in cm-1) of the Infrared Transitions in the Σ f Πe Subband of the20Ne-CO Spectruma

P(J) R(J)

J theory experiment ∆ theory experiment ∆

0 2146.8332 2146.5947 0.238 (-0.024)
1 2147.0350 2146.7933 0.242 (-0.019)
2 2146.1794 2145.9427 0.237 (-0.031) 2147.2286 2146.9821 0.246 (-0.012)
3 2145.9464 2145.7078 0.239 (-0.030) 2147.4138 2147.1604 0.253 (-0.002)
4 2145.7068 2145.4644 0.242 (-0.027) 2147.5909 2147.3288 0.262 (0.009)
5 2145.4611 2145.2133 0.248 (-0.022) 2147.7600 2147.4865 0.274 (0.023)
6 2145.2103 2144.9546 0.256 (-0.014) 2147.9215 2147.6336 0.288 (0.040)
7 2144.9552 2144.6893 0.266 (-0.004) 2148.0756 2147.7691 0.306 (0.060)
8 2144.6969 2144.4165 0.280 (0.010) 2148.2227 2147.8927 0.330 (0.086)
9 2144.4365 2144.1380 0.298 (0.028)

a ∆ is the absolute error of the transition frequencies computed from theab initio potential. The numbers in parentheses are absolute errors of
the transition frequencies computed from the scaled potential.

TABLE 5: Frequencies (in cm-1) of the Infrared Transitions in the Σ f Πf Subband of the20Ne-CO Spectruma

Q(J) Q(J)

J theory experiment ∆ J theory experiment ∆

1 2146.6304 2146.3921 0.238 (-0.027) 6 2146.7775 2146.5038 0.274 (0.002)
2 2146.6449 2146.4033 0.242 (-0.024) 7 2146.8302 2146.5430 0.287 (0.014)
3 2146.6667 2146.4192 0.247 (-0.019) 8 2146.8910 2146.5877 0.303 (0.028)
4 2146.6960 2146.4421 0.254 (-0.014) 9 2146.9603 2146.6391 0.321 (0.043)
5 2146.7329 2146.4701 0.263 (-0.007)

a ∆ is the absolute error of the transition frequencies computed from theab initio potential. The numbers in parentheses are absolute errors of
the transition frequencies computed from the scaled potential.

TABLE 6: Frequencies (in cm-1) of the Infrared Transitions in the Πe f Σ Subband of the20Ne-CO Spectruma

P(J) R(J)

J theory experiment ∆ theory experiment ∆

1 2139.6509 2139.7761 -0.125 (0.036) 2140.3047 2140.4222 -0.118 (0.048)
2 2139.4489 2139.5753 -0.126 (0.033) 2140.5375 2140.6599 -0.122 (0.045)
3 2139.2552 2139.3852 -0.130 (0.027) 2140.7769 2140.8995 -0.123 (0.046)
4 2139.0697 2139.2044 -0.135 (0.021) 2141.0222 2141.1484 -0.126 (0.044)
5 2138.8923 2139.0335 -0.141 (0.012) 2141.2727 2141.4047 -0.132 (0.039)
6 2138.7228 2138.8726 -0.150 (0.002) 2141.5274 2141.6660 -0.139 (0.034)
7 2138.5611 2138.7213 -0.160 (-0.009) 2141.7853 2141.9328 -0.147 (0.028)
8 2138.4066 2138.5830 -0.176 (-0.026) 2142.0453 2142.2072 -0.162 (0.016)
9 2138.2590 2138.4529 -0.194 (-0.043)

a ∆ is the absolute error of the transition frequencies computed from theab initio potential. The numbers in parentheses are absolute errors of
the transition frequencies computed from the scaled potential.
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parameterR0 by 0.9999 (cf. eq 13). In addition, to improve
the agreement with the experimental transition frequencies for
theΣ f Π andΠ f Σ transitions we scaled in both potentials
R2 by a factor 1.015. The scaling parameters were chosen to
reproduce theJ) 0f J) 1 transitions in theΣ f Σ andΣ f
Π bands.

The results computed from the two scaled surfaces for theΣ
f Σ transitions are presented in Table 3 in parentheses. An
inspection of Table 3 shows that this scaling greatly improves
the agreement between theory and experiment and supports our
conclusion that the potential for Ne-CO(V ) 1) is slightly
different from the one for Ne-CO(V ) 0). Similar results for

TABLE 7: Frequencies (in cm-1) of the Infrared Transitions in the Πf f Σ Subband of the20Ne-CO Spectruma

Q(J) Q(J)

J theory experiment ∆ J theory experiment ∆

1 2139.8538 2139.9781 -0.124 (0.039) 6 2139.7067 2139.8560 -0.149 (0.024)
2 2139.8393 2139.9663 -0.127 (0.037) 7 2139.6541 2139.8127 -0.159 (0.019)
3 2139.8175 2139.9481 -0.131 (0.035) 8 2139.5932 2139.7626 -0.169 (0.012)
4 2139.7882 2139.9233 -0.135 (0.033) 9 2139.5239 2139.7083 -0.184 (0.002)
5 2139.7514 2139.8932 -0.142 (0.029)
a ∆ is the absolute error of the transition frequencies computed from theab initio potential. The numbers in parentheses are absolute errors of

the transition frequencies computed from the scaled potential.

TABLE 8: Frequencies (in cm-1) of the Infrared Transitions in the Σ f Σexcited Subband of the20Ne-CO Spectruma

P(J) R(J)

J theory experiment ∆ theory experiment ∆

0 2151.6719 2151.9018 -0.230 (-0.017)
1 2151.2380 2151.4735 -0.236 (-0.023) 2151.8852 2152.1060 -0.221 (-0.013)
2 2151.0181 2151.2498 -0.232 (-0.023) 2152.0952
3 2150.7965 2151.0206 -0.224 (-0.024) 2152.3010
4 2150.5733 2150.7855 -0.212 (-0.023) 2152.5017
5 2150.3483 2152.6962
6 2150.1211 2152.8828
7 2149.8914 2153.0602
8 2149.6583 2153.2262
9 2149.4211

a ∆ is the absolute error of the transition frequencies computed from theab initio potential. The numbers in parentheses are absolute errors of
the transition frequencies computed from the scaled potential.

TABLE 9: Frequencies (in cm-1) of the Infrared Transitions in the Σexcited f Σ Subband of the20Ne-CO Spectrum, Computed
from the Scaled Potential

J P(J) R(J) J P(J) R(J)

0 2134.9123 5 2133.6904 2136.0886
1 2134.4785 2135.1372 6 2133.5156 2136.3411
2 2134.2703 2135.3671 7 2133.3520 2136.6003
3 2134.0689 2135.6021 8 2133.2014 2136.8669
4 2133.8753 2135.8425 9 2133.0652

TABLE 10: Frequencies (in cm-1) of the Infrared Transitions in the Π f ∆ Subband of the20Ne-CO Spectrum, Computed
from the Scaled Potential

Πe f ∆e Πe f ∆f Πf f ∆f Πf f ∆e

J P(J) R(J) Q(J) P(J) R(J) Q(J)

1 2150.4486 2150.4340
2 2150.6648 2150.0249 2150.6206 2149.9817
3 2149.3905 2150.8824 2150.0294 2149.3036 2150.7394 2149.9435
4 2149.1851 2151.1011 2150.0350 2149.0401 2150.9521 2149.8931
5 2148.9828 2151.3207 2150.0418 2148.7648 2151.0962 2149.8309
6 2148.7839 2151.5401 2150.0492 2148.4781 2151.2254 2149.7570
7 2148.5887 2151.7573 2150.0571 2148.1802 2151.3393 2149.6711
8 2148.3968 2151.9686 2150.0650 2147.8714 2151.4371 2149.5716
9 2148.2067 2150.0722 2147.5521 2149.4557

TABLE 11: Frequencies (in cm-1) of the Infrared Transitions in the ∆ f Π Subband of the20Ne-CO Spectrum, Computed
from the Scaled Potential

∆e f Πe ∆e f Πf ∆f f Πf ∆f f Πe

J P(J) R(J) Q(J) P(J) R(J) Q(J)

2 2135.8312 2136.8896 2136.2984 2135.8458 2136.9769 2136.2549
3 2135.6154 2137.0954 2136.3374 2135.6597 2137.2412 2136.2509
4 2135.3985 2137.2985 2136.3888 2135.4876 2137.5173 2136.2456
5 2135.1807 2137.4985 2136.4524 2135.3299 2137.8052 2136.2396
6 2134.9627 2137.6954 2136.5283 2135.1869 2138.1046 2136.2230
7 2134.7456 2137.8898 2136.6172 2135.0591 2138.4150 2136.2262
8 2134.5317 2138.0835 2136.7205 2134.9470 2138.7363 2136.2196
9 2134.3250 2136.8417 2134.8510 2136.2140
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the Σ f Π andΠ f Σ subbands are shown in Tables 4-7.
Here too, the agreement with the experiment is greatly improved
(by an order of magnitude or better). The absolute error of the
theoretical transition frequencies is of the order of 0.05 cm-1.
It is worth noting that we did not attempt to fit systematically
the potential to the experimental spectrum but simply checked
if by a simple scaling we could obtain better agreement with
experiment.
Randallet al.8 also reported observations of an additional

band in the region of 2151 cm-1 which was tentatively assigned
as a bending combination band. The results of the theoretical
calculations corresponding to this region presented in Table 8
show that this band corresponds to transitions from the ground
Σ state of Ne-CO(V ) 0) to the first excitedΣ state of Ne-
CO(V ) 1). Also for this band the agreement between theory
and experiment is satisfactory (within 0.2 cm-1), and the scaling
reduces the absolute error by a factor of 10.
Having the assignment for the observed bending combination

band it is interesting to check whether the final states in this
band can indeed be considered as bending states. In Figure 5a
we present the plot of the wave function for the excitedΣ state
with J ) 0. An inspection of this figure shows that the wave
function for this state has a nodal surface almost parallel to the
R axis. Hence, the first excitedΣ state can be considered as a

bending vibrational state of the complex. It is interesting to
note that the second excitedΣ state cannot be associated with
a simple bending/stretch mode. Figure 5b shows that the
bending and stretch excitations are heavily mixed for this state.
Our computed spectrum at 50 K shows that additional

transitions not reported in ref 8 should be observed in the static
cell spectrum. These additional transitions will correspond
(among others) to the excitedΣ f groundΣ transitions and to
Π f ∆ and∆ f Π subbands. The corresponding transition
frequencies computed from the scaled potential are reported in
Tables 9-11. These data will be useful in assigning portions
of the experimental spectrum in the region of 2133-2139 and
2149-2154 cm-1.

VI. Summary and Conclusions

The interaction potential energy surface of the Ne-CO
complex has been calculated for a broad range of configurations
by the use of symmetry-adapted perturbation theory. From our
calculations we extracted functions describing the separate
components of the interaction energy. Using the computed
potential energy surface we have generated bound rovibrational
states and the infrared spectrum of the Ne-CO complex
corresponding to the simultaneous excitation of the vibration
and hindered rotation of the CO molecule within the dimer.
Variational characterization of the rovibrational states revealed
a ground state of20Ne-CO with a dissociation energy of 34.15
cm-1 and several rotationally excited states of the complex. The

b

a

Figure 4. Theoretical infrared spectra of the20Ne-CO complex
accompanying the fundamental band of CO. The temperature is (a) 2
K and (b) 50 K.

b

a

Figure 5. (a) Cut through the first excited rovibrational wave function
of Ne-CO(V ) 0) for J ) 0, amplitude in 10-3 (bohr)-3/2. (b) Cut
through the second excited rovibrational wave function of Ne-CO(V
) 0) for J ) 0, amplitude in 10-3 (bohr)-3/2.
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computed frequencies of the infrared transitions corresponding
to the Σ f Σ, Σ f Π, andΠ f Σ subbands are in good
agreement with the experimental data.8 Still a minor improve-
ment in the agreement between theory and experiment could
be achieved by adjusting the anisotropy of the exchange-
repulsion energy and by making the Ne-CO (V ) 1) potential
slightly different from the Ne-CO (V ) 0) potential. Our
calculations assigned the observed bending combination band
to the transitions from the groundΣ state to the first excitedΣ
state. In addition, frequencies of theΠ f ∆ and ∆ f Π
transitions observed in the static cell spectrum were predicted.
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